Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Neurol Res Pract ; 4(1): 6, 2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1775381

ABSTRACT

This correspondence comments on a published article presenting a case of rhombencephalitis following SARS-CoV-2-vaccination with the mRNA vaccine BNT162b2 (Pfizer/BioNTech). We also present the case of a 47-year-old man who developed Guillain-Barré-syndrome and a fulminant encephalomyelitis 28 days after immunization with Ad26.COV2.S (Janssen/Johnson & Johnson). Based on the presented cases, we underscore the importance of clinical awareness for early recognition of overlapping neuroimmunological syndromes following vaccination against SARS-CoV-2. Additionally, we propose that that role of autoantibodies against angiotensin-converting enzyme 2 (ACE2) and the cell-surface receptor neuropilin-1, which mediate neurological manifestations of SARS-CoV-2, merit further investigation in patients presenting with neurological disorders following vaccination against SARS-CoV-2.

2.
Neurology ; 97(21): e2136-e2147, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1596718

ABSTRACT

BACKGROUND AND OBJECTIVES: There is accumulating evidence supporting an association between the thrombosis and thrombocytopenia syndrome (TTS) and adenovirus vector-based vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Yet TTS and TTS-associated cerebral venous sinus thrombosis (CVST) remain poorly characterized. We aim to systematically evaluate the proportion of CVST among TTS cases and assess its characteristics and outcomes. METHODS: We performed a systematic review and meta-analysis of clinical trials, cohorts, case series, and registry-based studies with the aim to assess (1) the pooled mortality rate of CVST, TTS-associated CVST, and TTS and (2) the pooled proportion of patients with CVST among patients with any thrombotic event and TTS. Secondary outcomes comprised clinical characteristics of patients with postvaccination thrombotic event. This meta-analysis is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was written according to the Meta-analysis of Observational Studies in Epidemiology proposal. RESULTS: Sixty-nine studies were included in the qualitative analysis comprising 370 patients with CVST out of 4,182 patients with any thrombotic event associated with SARS-CoV-2 vector-based vaccine administration. Twenty-three studies were included further in quantitative meta-analysis. Among TTS cases, the pooled proportion of CVST was 51% (95% confidence interval [CI] 36%-66%; I 2 = 61%). TTS was independently associated with a higher likelihood of CVST when compared to patients without TTS with thrombotic events after vaccination (odds ratio 13.8; 95% CI 2.0-97.3; I 2 = 78%). The pooled mortality rates of TTS and TTS-associated CVST were 28% (95% CI 21%-36%) and 38% (95% CI 27%-49%), respectively. Thrombotic complications developed within 2 weeks of exposure to vector-based SARS-CoV-2 vaccines (mean interval 10 days; 95% CI 8-12) and affected predominantly women (69%; 95% CI 60%-77%) under age 45, even in the absence of prothrombotic risk factors. DISCUSSION: Approximately half of patients with TTS present with CVST; almost one-third of patients with TTS do not survive. Further research is required to identify independent predictors of TTS following adenovirus vector-based vaccination. REGISTRATION INFORMATION: The prespecified study protocol has been registered in the International Prospective Register of Ongoing Systematic Reviews PROSPERO (CRD42021250709).


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Sinus Thrombosis, Intracranial , Thrombocytopenia , Thrombosis , COVID-19/epidemiology , Female , Humans , Middle Aged , SARS-CoV-2 , Sinus Thrombosis, Intracranial/epidemiology , Sinus Thrombosis, Intracranial/etiology
3.
Ther Adv Neurol Disord ; 13: 1756286420932036, 2020.
Article in English | MEDLINE | ID: covidwho-610846

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide, with a vast majority of confirmed cases presenting with respiratory symptoms. Potential neurological manifestations and their pathophysiological mechanisms have not been thoroughly established. In this narrative review, we sought to present the neurological manifestations associated with coronavirus disease 2019 (COVID-19). Case reports, case series, editorials, reviews, case-control and cohort studies were evaluated, and relevant information was abstracted. Various reports of neurological manifestations of previous coronavirus epidemics provide a roadmap regarding potential neurological complications of COVID-19, due to many shared characteristics between these viruses and SARS-CoV-2. Studies from the current pandemic are accumulating and report COVID-19 patients presenting with dizziness, headache, myalgias, hypogeusia and hyposmia, but also with more serious manifestations including polyneuropathy, myositis, cerebrovascular diseases, encephalitis and encephalopathy. However, discrimination between causal relationship and incidental comorbidity is often difficult. Severe COVID-19 shares common risk factors with cerebrovascular diseases, and it is currently unclear whether the infection per se represents an independent stroke risk factor. Regardless of any direct or indirect neurological manifestations, the COVID-19 pandemic has a huge impact on the management of neurological patients, whether infected or not. In particular, the majority of stroke services worldwide have been negatively influenced in terms of care delivery and fear to access healthcare services. The effect on healthcare quality in the field of other neurological diseases is additionally evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL